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Iwo parts

|. Averaging velocities and angles

2. Averaging opinions



Themes and concepts

. Self-similarity, scaling
. Multi-scaling

. Cascades

. Phase transitions

. Synchronization

. Bifurcations

. Pattern Formation
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. Coarsening

* Naturally emerge in various kinetic theories
e Useful in complex and nonequilibrium particle systems



Part I:
Averaging velocities and angles



Plan

. Averaging velocities

A. Kinetics of pure averaging
B. Averaging with forcing: steady-states

Il. Averaging angles

A. Averaging with forcing: steady states



The basic averaging process

® N identical particles
® Fach particle carries a number Vi
® Particles interact in pairs

® Both particles acquire the average

(U U)—> V1 + Vo U1 + Vo
b 2 72
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Conservation laws & dissipation

® TJotal number of particles is conserved

® Jotal momentum is conserved

N

E v; = constant
i=1

ST : .. 1
® Energy is dissipated in each collision E; = §v-2

1
AE — Z(Ul — ’02)2

We expect the velocities to shrink



Some details

Dynamic treatment
Each particle collides once per unit time
Random interactions
The two colliding particles are chosen randomly
Infinite particle limit is implicitly assumed

N — o
Process is galilean invariant v — v + v

Set average velocity to zero (z) =0



The temperature
Definition
T = (v*)
Time evolution = exponential decay
‘2—{ = —\T — T =Tye
All energy is eventually dissipated

Trivial steady-state

P(v) = d(v)

O | —



The moments

® Kinetic theory

8P (v, 1) //dvldng v1,t)P(vs,t) {5 (v _ 4 —QHJZ> — d(v —vl)}

gain loss

® Moments of the distribution
M,, = /dvv”P(v,t)

® Closed nonlinear recursion equations

n—2
dMl
: I )‘nMn — 2—n MmMn—m
- > (1)

m=2

® Asymptotic decay
M, ~e Mt with )\, =1-2"("1



Multiscaling

® Nonlinear spectrum of decay constants
Ap=1—2"(n"1

® Spectrum is concave, saturates
A < Am + An—m

® Each moment has a distinct behavior

My,

> OO0 as t — o0
M M, ..,

Multiscaling Asymptotic Behavior



The Fourier transform

The Fourier transform F(k) = /dv " P (v, t)

Obeys closed, nonlinear, nonlocal equation

aFaik) - F(k) = F2(k/2)
Scaling behavior, scale set by second moment
_ A 1
F(k,t) — f (ke™™") )\:?2:1

Nonlinear differential equation

Xz f'(2) + f(z) = f*(2/2)
Exact solution

Fz) = (1+[2]e



Closure: derivation
The Fourier transform
F(k) = /dv e P(v,t)

The kinetic theory

8P t)
(v, P(v,t) // dvidvs P(v1,t) P(ve, )5( U1 42—1)2>

Fourler transform of the gain term

/dv etkY // dvidva P(v1,t) P(va,t)0 (U - = ;7}2>
1kv U1 + V2
— //dvldng(Ulat)P(v%t)/dve 0 (U_ 2 )

= // dvlvaP(vl,t)P(vg,t)e“lfvl—gv2

= /dle(vl,t)eik%/dng(vg,t)eZkT
= F(k/2)F(k/2)
Closed equation for Fourier Transform
OF (k)
ot

- F(k) = F?(k/2)




Fourier transform generates the moments

® The Fourier transform r(x) :/dveik”P(v,t)

® |s the generating function of the moments M, = /dvv"P(v)
F(k) = /dveik”P(v)

. L
= /dv[1+zkv+a(zkv)2+ 3

— [avp@)+in / doup(o) + U / dout (o) 1 / oo P(o) 4 -

_ . (ik)* (ik)”
k? k4

= M0—§M2+ZM4‘|—"'

Mo + Mz + -

® (Closed equation for Fourier transform

OF (k) F(k) = F?(k/2)
ot
® Generates closed equations for the moments

dMs Mo

dt 2



The velocity distribution

® Self-similar form
P(v,t) — ep (ve)

® Obtained by inverse Fourier transform

2 1
plw) = 5 Baldassari 02
™ (14 w?)
® Power-law tail
p(w) ~w™*

|. Temperature is the characteristic velocity scale

2. Multiscaling is consequence of diverging
moments of the power-law similarity function



Stationary Solutions

® Stationary solutions do exist!
F(k) = F*(k/2)
® Family of exponential solutions
F(k) = exp(—kvg)

® | orentz/Cauchy distribution

1 1

Plv) = g 1 4 (v/vg)?

How is a stationary solution
consistent with dissipation!?



Extreme Statistics

Large velocities, cascade process

(22)
v— | =, =
2° 2

Linear evolution equation

i (5) -

Steady-state: power-law distribution

P(v) ~ v~ 2

Divergent energy, divergent dissipation rate

Power-law energy distribution

P(E) ~ E~3/2



Energy cascade
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Injection, Cascade, Dissipation

In P(|v])




Pure averaging: conclusions

® Moments exhibit multiscaling

® Distribution function is self-similar

® Power-law tail

® Stationary solution with infinite energy exists
® Driven steady-state

® Energy cascade



Averaging with diffusive forcing

Two independent competing processes

|. Averaging (nonlinear)

(11, 09) — V1 + UV U1 1 U2
1, U2 9 9 9

2. Random uncorrelated white noise (linear)
d?]j _ (t)
it

® Add diffusion term to equation (Fourier space)
(1 + DE*F(k) = F?(k/2)

System reaches a nontrivial steady-state
Energy injection balances dissipation



Infinite product solution

® Solution by iteration

1

1 1
F(k) =5 1+ Dk2

F2) = i paet W=

® |nfinite product solution

O

F(ky=1][1+D(k/2")?]"
1=0
® Exponential tail v — oo

P(v) o exp (—m/@) PO

k—i/vD

2%'

® Also follows from

0°P(v)
D 5.2 = —P(v)

Non-Maxwellian distribution/Overpopulated tails



Cumulant solution

Steady-state equation
F(k)(1+ Dk*) = F*(k/2)
Take the logarithm (k) = In F(k)
(k) +1n(1 4+ Dk?) = 29(k/2)
Cumulant solution ]
F(k) = exp | > v (—DK2)" /n
Generalized fluctuatig:-ldissipation relations

wn _ )\T—Ll _ [1 L 21—%} —1




Experiments

¥ experiment A

Fis? ©  experiment B

ne N —— theory

10 7 "™ — Maxwellian
5 ; !.__.v_ i

10 \*

Menon Ol

A shaken box of marbles Aronson 05



Averaging with forcing:
conclusions

® Nonequilibrium steady-states

® Energy pumped and dissipated by different
mechanisms

® Overpopulation of high-energy tail with respect to
equilibrium distribution



Averaging angles

. . Aronson & Tsimring 05
e Each rod has an orientation

0<6<r

e Alignment by pairwise interactions (nonlinear)

oy [(CEEE) e <
1,2 (01+92+2w 91+92+2w) 0y — 6] >

2

9 y
\/—» ||l
e Diffusive wiggling (linear)

do);
— —n.(t




Relevance

Biology: molecular motors
Ecology: flocking
Granular matter: granular chains and solid rods

Phase synchronization



Kinetic Theory

* Nonlinear integro-differential equation

op _ po°P /debP< —?>P<9+?)—P.

ot 0% ), 2 2
e Fourier transform
Py = (e ") = / dfe=" " P(0) pw):% P, ik?
- L

* Closed nonlinear equation

(14 Dk*)Py = )  Ai_;PP,
. i+i=k
* Coupling constants

)
1 =0
sin 51 1

Ag=—7 =10 ¢=2,4,
2




The order parameter

e | owest order Fourier mode
R = |(e")] = |P_4]

* Probes state of system
0 disordered state ‘\N\ /

R =< 0.4 partially ordered MM

1  perfectly ordered state 111




The Fourier equation

e Compact Form
P,= » G;;PP;
i+i=k
* Transformed coupling constants

Q. . — Ai—j
1,] 1—|—D(i—|—j)2—2Ai_|_j

* Properties

Gij = Gj,
Gij = G

G@j — O, for |7;—j’:2,4,....



Solution

* Repeated iterations (product of three modes)

Pk = E E Gi,j Gl,m Pz Pl Pm.
i+i=k l+m=j
i£0, 520 1520, m=£0

* When k=2,4.8,...

Py, = G1,1
Py GooPs = G2,2G%,1

* Generally

P = 2G12 + 2G 14

2G12G11 +2G 14G22G



Partition of Integers

* Diagramatic solution

Pk — Rk i Pk.n R2n

. o —0
e Partition "
k=1+14+---4+1+1-1—---—1.
N——— ——
k+n n
e Partition rules ;
k i+ j | |
— -1 4
i £ 0 | | | P31 = 2G_1,4G22GT |
jo# 0 o
Gy ¥ 1 alin

All modes expressed in terms of order parameter



The order parameter

* Diagramatic solution

R — Rk i Pin RQn

n=0

 Landau theory

C 3
R=p—pR+

e (Critical diffusion constant

4
De=——1

T

Closed equation for order parameter



Nonequilibrium phase transition

Critical diffusion constant D, = % —1
Weak diffusion: ordered phase R >0
Strong diffusion: disordered phase R =0

Critical behavior R~ (D.— D)'/?

1
0.6

R |
0.4F

0.2F

0




Distribution of orientation

* Fourier modes decay exponentially with R

P, ~ RF
e Small number of modes sufficient
4 ' T ' | ' I '
. —D/D =0.5 -
Al \ ——D/D =038
.—. D/D =099
o | o Y —DDs=l
6_/2_ /// \\\ =
A /
1 - --’"jﬂ ''''''' “¥'\ =
- //// \\\\ e
O'__—::, I l 1\\:;
1 -0.5 0 0.5 |
0/
1
PO) = — + — ! RCOSH—I— G1 1R*cos (20) + = G1 2G1 1R cos (30) +

2T



Arbitrary alignment rates

® Kinetic theory: arbitrary alignment rates

_d&p [T & ¢ i
0=D—5 /_Wd¢K(¢)P (9 ~ 5) P <9+ 5) — P(0) /_Wd¢K(¢)P(9+¢)
® Fourier transform of alignment rate
1 [" ;
Ag =50 | doeER(9)
® Recover same Fourier equation using
LA+ A — Agy — Ay

Gii =575 D(i+ 7)% — 24
When Fourier spectrum is discrete:

exact solution is possible for
arbitrary alignment rates




Experiments

“A shaken dish of toothpicks™



Averaging angles:
conclusions

Nonequilibrium phase transition

Weak noise: ordered phase (nematic)

Strong noise: disordered phase (isotropic)
Solution relates to iterated partition of integers
Klnetic theory of synchronization

Only when Fourier spectrum is discrete: exact
solution possible for arbitrary averaging rates
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Part 2.
Averaging Opinions



Plan

. Restricted averaging as a compromise process

A. Continuous opinions
B. Discrete opinions

Il. Restricted averaging with noise
A. Single-party dynamics
B. Two-party dynamics
C. Multi-party dynamics



l. Restricted averaging



The compromise process

Opinion measured by a continuum variable
—A <z <A

. Compromise: reached by pairwise interactions
T1+ T2 T1T X2
(3717 'CUZ) — 9 9 9

. Conviction: restricted interaction range
e o > a o
‘331 — wg‘ <1 > Q

Restricted averaging process

One parameter model

Mimics competition between compromise and
conviction Deffuant & Weisbuch (2000)



Problem set-up

Given uniform initial (un-normalized) distribution

Py(z) 1 |z < A
’ ozl > A 1‘ ‘
Find final distribution ~A A
Py(x) =7

Multitude of final steady states ‘ ‘
—A A

E m; 0(x — x;) @ — a5 > 1

Dynamics selects one (determmlstlcally')

Multiple localized clusters



Further details

Dynamic treatment

Each individual interacts once per unit time
Random interactions

Two interacting individuals are chosen randomly

Infinite particle limit is implicitly assumed

N — o0

Process is galilean invariant = — z + x

Set average opinion to zero (z) =0



Numerical methods, kinetic theory

® Same master equation, restricted integration

6P (2, 1) //d:z:ldsz x1,t)P(x2,1) {5( a _5332) —5(:13—x1}

1 — 0| < 1

DDlrect Monte Carlo simulation of stochastic process

[A Numerical integration of rate equations

P
|
P e 1




Two Conservation Laws

® Jotal population is conserved

A
/ dr P(x) = 2A

—A
® Average opinion is conserved

/_idma:P(az):O



Rise and fall of central party

0< A <1.871 1.871 < A < 2.724

i R JL 041

Central party may or may not exist!




Resurrection of central party

2.724 < A < 4.079 4.079 < A < 4.956

1

Parties may or may not be equal in size



Emergence of extremists

|

Tiny fringe parties (m~10-3)



Bifurcations and Patterns

10
major
central
5 minor




Self-similar structure, universality

Periodic sequence of bifurcations_

|. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch

X0

3. Nucleation of central cluster
45

Alternating major-minor pattern_ |

0

Clusters are equally spaced

Period L gives major cluster mass, separation

2(A) = 2(A) + L é z.@




How many political parties?
0.2

015 Israel

Ukraine

frequency
o

0.05

0 5 10 15 20
number of parties
eData: CIA world factbook 2002

* |20 countries with multi-party parliaments
* Average=5.8; Standard deviation=2.9



Cluster mass

® Masses are periodic
m(A)=m(A+L) .,
® Major mass 1]

M — L =2.155 o2 |

® Minor mass m 107

m — 3 x 1074

Why are the minor clusters so small?

gaps!




Scaling near bifurcation points

® Minor mass vanishes 18_3
T ~ (A — Ac)a 10—4

-5

® Universal exponent m 10
10

107

3 typel .

o 4 type 3 e
107

L-2 is the small parameter
explains small saturation mass



Consensus = pure averaging

* Integrable for A < 1/2
(2?(t)) = (2*(0)) ™

* Final state: localized
Po(x) =2A0(x)

* Rate equations in Fourier space
Py(k) + P(k) = P*(k/2)

* Self-similar collapse dynamics

P(2) x (1+z2)_2 2 =x/4/(x?)

The Inelastic Maxwell Model, EB & PL Krapivsky, Lecture Notes in Physics 624, 65 (2003)



Heuristic derivation of exponent

* Perturbation theory A =1 +¢ |
e Major cluster z(00) =0
* Minor cluster z(co) = +(1+ €¢/2) A J\ A

-1-¢ = 1 1+¢

® Rate of transfer from minor cluster to major cluster

dm _
T o M —> moe~cee !

dt
® Process stops when

xwe_tf/zwe

® Final mass of minor cluster

m(oo) ~ m(ty) ~ € a=3



Pattern selection

® |inear stability analysis

. 8 k2
o t(kx+wt) _ T dn 2 o
P—1xe —  w(k) . sin o ksmk 2
® Fastest growing mode w
dw 2T
— = L =—=2.2515
dk k k
® Traveling wave (FKPP saddle point analysis)
dw  Im(w) 27
dk — Im(k) k %
L

Patterns induced by wave propagation from boundary
However, emerging period is different

2.0375 < L < 2.2515
Pattern selection is intrinsically nonlinear



Discrete opinions

: P
e Compromise process 2| 11

|
[ P, P, Phb P, P, P
(n—1,n+1) — (n,n) Py+P +P=1

N

e Master equation
dP,

e 2P, _1Pyy1 — Pp(Pr—2 + Pyy2) 121 /
o Simplest example: 6 states N\
‘ l

e Symmetry + normalization:

1/2 L P,
e [wo-dimensional problem

Initial condition determines final state

Isolated fixed points, lines of fixed points



Discrete opinions

30

Dissipative system, volume contracts

Energy (Lyapunov) function exists BF e

X 0»......:..........:.....:.....

No cycles or strange attractors

-10

Uniform state is unstable (Cahn-Hilliard) s

=30 -

Discrete case yields useful insights



Pattern selection

® |inear stability analysis
P —1 o etfetwt) L ap(k) = 4cosk — 4 cos 2k — 2

® Fastest growing mode

dw 27T
= [ =20
dk k 0
® Traveling wave (FKPP saddle point analysis)
dw  Im(w) 27
R — L =—=5.31
dk — Im(k) k

Again, linear stability gives useful upper and lower bounds L/ L\/\/V_

5.3l < L <6 while  Lgelect = 5.67

Pattern selection is intrinsically nonlinear



. Restricted averaging:
conclusions

® Clusters form via bifurcations

® Periodic structure

® Alternating major-minor pattern

® Central party does not always exist
® Power-law behavior near transitions

® Nonlinear pattern selection



|. Outlook

e Pattern selection criteria

o Gaps

e Role of initial conditions, classification

e Role of spatial dimension, correlations

e Disorder, inhomogeneities

e Tiling/Packing in 2D

e Discord dynamics (seceder model, Halpin-Heally 03)

Many open questions



|l. Restricted averaging with noise



Diffusion (noise)

* Diffusion: Individuals change opinion spontaneously

D
TL—>7”L::1

90 or _0—@

* Adds noise (“‘temperature’)
* Linear process: no interaction
* Mimics unstable, varying opinion

e Influence of environment, news, editorials, events



Rate equations

e Compromise: reached through pairwise interactions
(n—1,n+1) — (n,n)

e Conserved quantities: total population, average opinion

e Probability distribution P,(t)

e Kinetic theory: nonlinear rate equations

dFPy,
W — 2Pn—1Pn—|—1 —Pn(Pn_Q _l_Pn—|—2) _I_D(P’n,—l +PTL-|-1 o 2Pn)

[ IDirect Monte Carlo simulations of stochastic process

[A Numerical integration of rate equations



Single-party dynamics
e Initial condition: large isolated party

Pn(()) — m(dmO -+ 571,,—1)

e Steady-state: compromise and diffusion balance
DPn — n—an—I—l

e Core of party: localized to a few opinion states
Phb=m Pi=D  P,=Dm""

e Compromise negligible for n>2

Party has a well defined core



The tail

e Diffusion dominates outside the core

dP,
W:D(Pn—1+Pn+1_2Pn) P<<D

* Standard problem of diffusion with source

P, ~m 1 (nt1/?)
e Tail mass
My ~ m ™ t1/?

* Party dissolves when

Misqg ~m — T~ m?

Party lifetime grows dramatically with its size



Core versus tail

m = 10°

| T | L] 1 ' | " I
I ' T 1 ' I o \

10T [@—© simulation| %
* theory T

— m=10% t=10°

— m=10" t=10"

— m=10°,t=10°| |

10"

n ‘ nt /2

Party height=m | Self-similar shape
Party depth~mr Gaussian tail



Qualitative features

» Exists Iin a quasi-steady state
 Tight core localized to a few sites

 Random opinion changes of members do not affect party
position

» Party lifetime grows very fast with size
» Ultimate fate of a party: demise
* |[ts remnant: a diffusive cloud

* Depth inversely proportional to size, the larger the party
the more stable



Iwo party dynamics =

m<

[
* |nitial condition: two large isolated parties \' '|

Pn(o) — N> (5n,0 + 577,,—1) + m < (5n,l + 5n,l—|—1)

* Interaction between parties mediated by diffusion

O:Pn—l_l_Pn—l—l_ZPn

* Boundary conditions set by parties depths

1 1
Py = — P=—
m- m< P

* Steady state: linear profile

1 T~ l —

pnzlg(l 1)3 B



Merger

* Steady flux from small party to larger one p
1 1 1 1
J~ = ~
. l <m< m>> [m< J
* Merger time s
1~ < lm2< e
J J =—DP,

* Lifetime grows with separation (“'niche”)
e Outcome of interaction is deterministic

* Larger party position remains fixed throughout
merger process

Small party absorbed by larger one



Merger: numerical results

1 " 1T " T 400 I L I
| |
0.008} l -
| | 300} .
| " i .
P 0.006 o 7 - P |
n e n, 200 -
0.004} -7 _
gon ”
= 100F | _
0.002F - |
|
O 1 l 1 l 1 I 1 I 1 () | | 1 | |
0 20 40 60 30 100 0 20 40 60 80

100



Multiple party dynamics

e Initial condition: large isolated party
P,,(0) = randomly chosen number in [1 —€: 1 + €]

e Linear stability analysis

n
e Growth rate of perturbations /_k\’f(?

AMk) = (4cosk —4cos2k —2) — 2D (1 — cos 2k)

e Long wavelength perturbations unstable
k < ko coskg = D/2
P=1 stable only for strong diffusion D>D_=2



Strong noise (D>D.)
* Regardless of initial conditions

Py — (Pr(0))

e Relaxation time

N\~ (D.—Dk* = 71~ (D—-D,)"*

No parties, disorganized political system



Weak noise (D<D,): Coarsening

* Smaller parties merge into large parties
* Party size grows indefinitely
* Assume a self-similar process, size scale m
* Conservation of populations implies separation
[ ~m
* Use merger time to estimate size scale
t ~Ilm* ~m?’ — m ~ /3

e Self-similar size distribution
P, ~t Y3F(mt=/3)

Lifshitz-Slyozov coarsening



Coarsening: numerical results

Wl

1()2_ ™TTTTT

- | = = slope=1/3

3 5
10 t 10 10

*Parties are static throughout process
*A small party with a large niche may still

outlast a larger neighbor!



Three scenarios

early intermediate late



|l. Restricted averaging with noise:
conclusions

* |solated parties
- Tight,immobile core and diffusive tail
- Lifetime grows fast with size

* Interaction between two parties
-Large party grows at expense of small one

- Deterministic outcome, steady flux
* Multiple parties
- Strong noise: disorganized political system, no parties

- Weak noise: parties form, coarsening mosaic
-No noise: stable parties, pattern formation
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“| can calculate the motions of heavenly boclies,

but not the madness of Pcol:)le.”

Isaac Newton



